我有一个连续的周期性轴承故障信号(具有时间幅度),该信号在$ 12 \ textrm {kHz} $和$ 48 \ textrm {kHz} $的频率下采样。我使用了一些机器学习技术(卷积神经网络)将错误信号分类为非错误信号。
当我使用$ 12 \ textrm {kHz} $时,我能够实现分类精度$ 97 \ pm 1.2 \%$准确性。同样,即使在相同的RPM,负载和与传感器的记录角度下进行记录,当我对相同的信号应用相同的技术但以$ 48 \ textrm {kHz} $进行采样时,我也能够达到$ 95 \%$的精度。
错误分类率上升的原因可能是什么?
有什么技术可以发现信号中的差异?
更高分辨率的信号容易产生更高的噪声吗?
有关信号的详细信息,请参见第3章。
#1 楼
以更高的频率采样将为您提供更有效的位数(ENOB),最高达到您使用的模数转换器(ADC)的无杂散动态范围的限制(以及其他因素,例如模拟输入) ADC的带宽)。但是,在执行此操作时,有一些重要方面需要理解,我将进一步详细介绍。这归因于量化噪声的一般性质,即在对与采样时钟无关的信号进行采样的条件下很好地近似为白色(频率)均匀(幅度)噪声分布。此外,满量程真实正弦波的信噪比(SNR)将很好地近似为:
<$ SNR = 6.02 \ text {dB / bit} + 1.76 \ text {dB } $$
例如,一个完美的12位ADC对满量程正弦波进行采样,其SNR为$ 6.02 \乘以12 + 1.76 = 74 $ dB。
通过使用满量程正弦波,我们建立了一致的参考线,从中可以确定由于量化而产生的总噪声功率。在一定范围内,即使减小正弦波幅度,或者使用多个正弦波合成的信号(通过傅里叶级数展开表示任何常规信号)时,噪声功率仍保持不变。
进一步如前所述,当采样率与输入不相关时(由于具有足够位数的不适当采样,并且输入信号足够快,因此,由于量化导致的此噪声级别可以很好地近似为白噪声过程)。跨多个量化级别从一个样本到另一个样本,不等采样意味着使用时钟进行采样,该时钟与输入的频率不是整数倍关系。作为我们数字采样频谱中的白噪声过程,量化噪声功率将从0(DC)的频率均匀地扩展到真实信号的采样率($ f_s / 2 $)的一半,即$ -f_s / 2 $到$ + f_s / 2 $表示复数信号。在理想的ADC中,由于量化导致的总方差与采样率无关(与量化级别的大小成比例,与采样率无关),总方差保持不变。为了清楚地看到这一点,请考虑我们之前提醒自己的正弦波的标准偏差:$ \ frac {V_p} {\ sqrt {2}} $;只要采样足够快以满足Nyquist的标准,无论采样速度有多快,都将产生相同的标准偏差。请注意,它与采样率本身无关。类似地,量化噪声的标准偏差和方差与频率无关,但是只要每个量化噪声样本与每个先前样本都是独立且互不相关的,那么该噪声就是白噪声过程,这意味着它在我们的数字信号中平均分布频率范围。如果我们提高采样率,则噪声密度会下降。如果由于我们感兴趣的带宽较低而随后进行过滤,则总噪声将下降。具体来说,如果您滤除一半频谱,则噪声将降低2(3 dB)。这个经典公式是从量化噪声的均匀分布得出的,对于任何均匀分布,方差为$ \ frac {A ^ 2} {12} $,其中A是分布的宽度。下图详细说明了这种关系以及我们得出上述公式的方式,将全比例正弦波($ \ sigma_s ^ 2 $)的直方图和方差与量化噪声的直方图和方差($ \ sigma_N ^ 2 $),其中$ \ Delta $是量化级别,b是位数。因此,正弦波的峰到峰幅度为$ 2 ^ b \ Delta $。您将看到,为正弦波$ \ frac {(2 ^ b \ Delta)^ 2} {8} $的方差取下面所示方程的平方根就是熟悉的$ \ frac {V_p} {\ sqrt {2}} $为正弦波在峰值幅度$ V_p $的标准偏差。因此,我们将信号方差除以噪声方差作为SNR。
实际上,实际的ADC会受到限制,包括非线性,模拟输入带宽,不确定的孔径等将限制我们可以进行多少采样,以及可以实现多少有效位。模拟输入带宽将限制我们可以有效采样的最大输入频率。非线性会导致“杂散”,它们是相关的频率音调,不会散开,因此不会受益于我们先前在白色量化噪声模型中看到的相同噪声处理增益。这些杂散在ADC数据手册中被量化为无杂散动态范围(SFDR)。在实践中,我指的是SFDR,通常利用过采样的优势,直到预测的量化噪声与SFDR处于同一水平,此时,如果最强的杂散恰好在频带内,则SNR不会进一步提高。为了进一步详细说明,我将需要更详细地参考特定设计。
ADC数据手册中也给出了有效位数(ENOB)规范,很好地捕获了所有噪声贡献。基本上,通过反转我首先给出的SNR方程来量化期望的实际ADC总噪声,以得出理想ADC所能提供的等效位数。由于这些降级源,它总是小于实际位数。重要的是,随着采样率的上升,它也会下降,因此过采样的回报点将逐渐减少。
例如,考虑一个实际的ADC,该ADC在100 MSPS采样速率下具有11.3位的指定ENOB和SFDR为83 dB。 11.3 ENOB是满量程正弦波的SNR为69.8 dB(70 dB)。采样的实际信号可能会处于较低的输入电平,以便不会削波,但是通过了解满量程正弦波的绝对功率电平,我们现在知道了总ADC噪声的绝对功率电平。例如,如果导致最大SFDR和ENOB的满量程正弦波为+9 dBm(另请注意,具有最佳性能的该电平通常比正弦波将开始削波的实际满量程低1-3 dB! ),则ADC的总噪声功率将为+ 9dBm-70 dB = -61 dBm。由于SFDR为83 dB,因此我们可以很容易地期望通过过采样来达到该极限(但如果杂波位于我们的最终感兴趣频带内,则不会更多)。为了获得22 dB的增益,过采样率N必须至少为$ N = 10 ^ {\ frac {83-61} {10}} = 158.5 $因此,如果我们感兴趣的实际实际信号带宽为50MHz /158.5 = 315.5 KHz,我们可以在100 MHz采样,并从过采样中获得22 dB或3.7个额外的位,总ENOB为11.3+ 3.7 = 15位。
作为最后的说明,要知道Sigma Delta ADC架构使用反馈和噪声整形来实现过采样带来的比特数增加,其数量比我在此处介绍的传统ADC可以实现的要多得多。我们看到了3dB /倍频程的增加(每次将频率加倍时,SNR就会增加3dB)。一个简单的一阶Sigma Delta ADC的增益为9dB /倍频程,而一个三阶Sigma Delta的增益为21 dB /倍频程! (五阶Sigma Delta并不少见!)。
还可以在
上看到相关的响应,如何同时进行欠采样和过采样?
过采样同时保持噪声PSD
如何选择FFT深度进行ADC性能分析(SINAD,ENOB)
如何增加信号量化噪声会提高ADC的分辨率
评论
$ \ begingroup $
嗯...知道为什么音频ADC在更高的采样率下会有更多的噪声吗?例如,UDA1380在96 kHz时的A加权SNR比48 kHz时差3 dB,而WM8776在96 vs 48时差2 dB。
$ \ endgroup $
– Endolith
17年4月15日在14:09
$ \ begingroup $
许多失真源的相对时间延迟是固定的(例如光圈不确定性)。在较高的采样率下,此固定时间是一个较大的相位(相对于采样时钟),因此是一个较大的相位噪声分量。
$ \ endgroup $
–丹·博申(Dan Boschen)
17年4月15日在14:36
$ \ begingroup $
@endolith添加到上面的快速说明中,以防您熟悉模拟世界中使用混频器的频率转换:采样过程与混频相同(只是多个LO与基频成整数关系) ,这是您的采样时钟)。当我们使用混频器进行频率转换时,LO相位噪声会转换为我们的信号(通过卷积),因此,LO上的任何相位噪声都会变成具有相同dBc / Hz频谱密度的信号上的相位噪声。具有理想LO的ADC非线性效应与具有噪声本振的ADC相似
$ \ endgroup $
–丹·博申(Dan Boschen)
17年4月15日在15:00
$ \ begingroup $
因此,我们看到过采样达到我所描述的极限时具有明显优势,该极限是由于无杂散动态范围,孔径不确定性和其他非线性影响以及ADC本身的模拟输入带宽所致。鉴于动态功率与$ CV ^ 2 / f $成比例,因此功耗也存在问题,其中C为输入电容,V为电压,f为频率。采样速度快两倍,并且由于输入电容而导致的动态功耗将增加一倍。
$ \ endgroup $
–丹·博申(Dan Boschen)
17年4月15日在15:06
$ \ begingroup $
@ Dan,非常感谢,尽管我花了很长时间才了解您的解释真棒。
$ \ endgroup $
–疯狂
17年4月20日在17:20
#2 楼
如果您以更高的采样率进行采样,则需要分析(例如,向CNN馈送)成比例更长的采样矢量,以获得大致相同的频率分辨率(或任何振动等其他特征)。或者,如果CNN的输入大小受到限制,则可以事先对数据进行过滤和下采样至先前的长度(从而降低采样率)。在某些情况下(取决于系统噪声,使用的抗混叠滤波器以及ADC等),这可能会改善数据的S / N(由于降低混叠噪声或扩展量化噪声等)。
评论
除非您指定在采样之前发生了什么模拟信号处理以及如何处理采样信号,否则这个问题尚不清楚。从数学上讲,如果您的信号受到适当的带宽限制以进行采样,然后从48 kHz-> 12 kHz进行了适当的数字抽取,则信息内容可证明是相同的(奈奎斯特采样定理)。相反,应该提出这样的问题,例如“是否有较高采样率的缺点?”,因为从每个已知的方面来看,较高的采样率更好,但仅从1个最初的大带宽,2个高速模拟ADC电路, 3- DSP的计算和内存成本,如果冗余使用,在各个方面都会有缺点。
@ Fat32“从各个方面来看,更高的采样率更好?”如什么?
@endolith…可以表示更多的带宽,通过过采样可以改善SNR,避免在您感兴趣的信号中出现模拟AA滤波器的滚降,通常在模拟和数字滤波器设计中具有更大的自由度,对时间漂移的容忍度更高,通过对各种信号进行过采样可以增加动态范围信号类别,通过抖动获得更多的DR。
@MarcusMüller,感谢您提供的许多可能方面的清单...