(《高级全局照明》第2版,第60页)的等式如下: } {N} \ int(\ frac {f(x)} {p(x)}-I)^ 2p(x)dx $
$ \ space \ space \ space \ space = \颜色{red} {\ frac {1} {N} \ int(\ frac {f(x)} {p(x)})^ 2p(x)dx -I ^ 2} $
$ \ space \ space \ space \ space = \ frac {1} {N} \ int \ frac {f(x)^ 2} {p(x)} dx -I ^ 2 $
但是,方程式似乎不正确。我认为红色区域是错误的,应按如下所示更改公式:
$ \ sigma ^ 2 = \ frac {1} {N} \ int(\ frac {f(x)} { p(x)}-I)^ 2p(x)dx $
$ \ space \ space \ space \ space \ space = \ color {red} {\ frac {1} {N} \ int( (\ frac {f(x)} {p(x)})^ 2 -2 \ frac {f(x)} {p(x)} I + I ^ 2)p(x)dx} $
$ \ space \ space \ space \ space = \ frac {1} {N} \ int \ frac {f(x)^ 2} {p(x)}-2f(x)I + I ^ 2p(x)dx $
$ \ space \ space \ space \ space = \ frac {1} {N} \ int \ frac {f(x)^ 2} {p(x)} -2f(x)I dx \ space + \ frac {1} {N} I ^ 2 $
$ \ space \ space \ space \ space \ space = \ frac {1} {N} \ int \ frac {f(x)^ 2} {p(x)} dx-\ frac {2} {N} I ^ 2 \ space + \ frac {1} {N} I ^ 2 $
$ \ space \ space \ space \ space = \ frac {1} {N} \ int \ frac {f(x)^ 2} {p(x)} dx-\ frac {1} {N} I ^ 2 $
对吗?