我有一些代码将火星的红外图像转换成热惯性图,然后将其存储为2D numpy数组。我一直将这些地图另存为hdf5文件,但我真的很想将它们另存为栅格图像,以便可以在QGIS中对其进行处理。我经历了多次搜索,找到了如何执行此操作的方法,但是没有运气。我尝试按照http://www.gis.usu.edu/~chrisg/python/上的教程中的说明进行操作,但是将其导入QGIS时,使用他的示例代码生成的文件以纯灰色框打开。我觉得如果有人可以将最简单的过程建议为我想做的事的简化示例,那么我也许可以取得一些进展。我有QGIS和GDAL,很高兴安装任何人都可以推荐的其他框架。我使用的是Mac OS 10.7。
因此,例如,如果我有一个数不清的热惯性数组,看起来像:
TI = ( (0.1, 0.2, 0.3, 0.4),
(0.2, 0.3, 0.4, 0.5),
(0.3, 0.4, 0.5, 0.6),
(0.4, 0.5, 0.6, 0.7) )
像素我具有经度和纬度:
lat = ( (10.0, 10.0, 10.0, 10.0),
( 9.5, 9.5, 9.5, 9.5),
( 9.0, 9.0, 9.0, 9.0),
( 8.5, 8.5, 8.5, 8.5) )
lon = ( (20.0, 20.5, 21.0, 21.5),
(20.0, 20.5, 21.0, 21.5),
(20.0, 20.5, 21.0, 21.5),
(20.0, 20.5, 21.0, 21.5) )
人们会建议采用哪种程序将这些数据转换为可以在QGIS中打开的栅格文件?
#1 楼
一种可能的解决方案:将其转换为ASCII栅格,其文档在这里。使用python这应该相当容易。因此,使用上面的示例数据,您将在.asc文件中得到以下内容:
ncols 4
nrows 4
xllcorner 20
yllcorner 8.5
cellsize 0.5
nodata_value -9999
0.1 0.2 0.3 0.4
0.2 0.3 0.4 0.5
0.3 0.4 0.5 0.6
0.4 0.5 0.6 0.7
这可以成功添加到QGIS和ArcGIS中,并在ArcGIS中进行了样式化:
附录:尽管可以按照说明将其添加到QGIS中,您尝试进入属性(进行样式化)后,QGIS 1.8.0将挂起。我将其报告为错误。如果您也遇到这种情况,那么那里还有许多其他免费的GIS。
评论
太好了,谢谢。而且我想像已将数组写为ascii文件,然后可以使用预先编写的转换函数将其转换为二进制格式。
– EddyTheB
2012年10月22日19:03
仅供参考,我没有QGIS的棘手问题,我也有版本1.8.0。
– EddyTheB
2012年10月22日19:10
嗨,有没有什么链接可以找到如何将numpy数组转换为ASCII的链接,以便最终文件可以得到geotiff进行绘制。
–sameer_nubia
20年11月2日,10:54
#2 楼
下面是我为一个使用numpy和gdal Python模块的研讨会编写的示例。它从一个.tif文件读取数据到一个numpy数组中,对该数组中的值进行重新分类,然后将其写回到.tif中。从您的解释看来,您可能已成功写出有效文件,但您只需要在QGIS中将其符号化即可。如果我没记错的话,当您第一次添加栅格时,如果没有预先存在的颜色映射,它通常会显示所有一种颜色。
import numpy, sys
from osgeo import gdal
from osgeo.gdalconst import *
# register all of the GDAL drivers
gdal.AllRegister()
# open the image
inDs = gdal.Open("c:/workshop/examples/raster_reclass/data/cropland_40.tif")
if inDs is None:
print 'Could not open image file'
sys.exit(1)
# read in the crop data and get info about it
band1 = inDs.GetRasterBand(1)
rows = inDs.RasterYSize
cols = inDs.RasterXSize
cropData = band1.ReadAsArray(0,0,cols,rows)
listAg = [1,5,6,22,23,24,41,42,28,37]
listNotAg = [111,195,141,181,121,122,190,62]
# create the output image
driver = inDs.GetDriver()
#print driver
outDs = driver.Create("c:/workshop/examples/raster_reclass/output/reclass_40.tif", cols, rows, 1, GDT_Int32)
if outDs is None:
print 'Could not create reclass_40.tif'
sys.exit(1)
outBand = outDs.GetRasterBand(1)
outData = numpy.zeros((rows,cols), numpy.int16)
for i in range(0, rows):
for j in range(0, cols):
if cropData[i,j] in listAg:
outData[i,j] = 100
elif cropData[i,j] in listNotAg:
outData[i,j] = -100
else:
outData[i,j] = 0
# write the data
outBand.WriteArray(outData, 0, 0)
# flush data to disk, set the NoData value and calculate stats
outBand.FlushCache()
outBand.SetNoDataValue(-99)
# georeference the image and set the projection
outDs.SetGeoTransform(inDs.GetGeoTransform())
outDs.SetProjection(inDs.GetProjection())
del outData
评论
+1表示冲洗-正在将我的头撞在墙上,试图弄清楚如何“保存”东西!
– Badgley
2015年8月7日在16:46
我必须添加outDs = None才能保存它
– JaakL
17年11月20日在11:44
#3 楼
我终于找到了这个解决方案,该解决方案是我从这次讨论中获得的(http://osgeo-org.1560.n6.nabble.com/gdal-dev-numpy-array-to-raster-td4354924.html)。我喜欢它,因为我可以直接从一个numpy数组转到一个tif光栅文件。对于可以改进解决方案的评论,我将不胜感激。如果有人搜索相似的答案,我会在此处发布。import numpy as np
from osgeo import gdal
from osgeo import gdal_array
from osgeo import osr
import matplotlib.pylab as plt
array = np.array(( (0.1, 0.2, 0.3, 0.4),
(0.2, 0.3, 0.4, 0.5),
(0.3, 0.4, 0.5, 0.6),
(0.4, 0.5, 0.6, 0.7),
(0.5, 0.6, 0.7, 0.8) ))
# My image array
lat = np.array(( (10.0, 10.0, 10.0, 10.0),
( 9.5, 9.5, 9.5, 9.5),
( 9.0, 9.0, 9.0, 9.0),
( 8.5, 8.5, 8.5, 8.5),
( 8.0, 8.0, 8.0, 8.0) ))
lon = np.array(( (20.0, 20.5, 21.0, 21.5),
(20.0, 20.5, 21.0, 21.5),
(20.0, 20.5, 21.0, 21.5),
(20.0, 20.5, 21.0, 21.5),
(20.0, 20.5, 21.0, 21.5) ))
# For each pixel I know it's latitude and longitude.
# As you'll see below you only really need the coordinates of
# one corner, and the resolution of the file.
xmin,ymin,xmax,ymax = [lon.min(),lat.min(),lon.max(),lat.max()]
nrows,ncols = np.shape(array)
xres = (xmax-xmin)/float(ncols)
yres = (ymax-ymin)/float(nrows)
geotransform=(xmin,xres,0,ymax,0, -yres)
# That's (top left x, w-e pixel resolution, rotation (0 if North is up),
# top left y, rotation (0 if North is up), n-s pixel resolution)
# I don't know why rotation is in twice???
output_raster = gdal.GetDriverByName('GTiff').Create('myraster.tif',ncols, nrows, 1 ,gdal.GDT_Float32) # Open the file
output_raster.SetGeoTransform(geotransform) # Specify its coordinates
srs = osr.SpatialReference() # Establish its coordinate encoding
srs.ImportFromEPSG(4326) # This one specifies WGS84 lat long.
# Anyone know how to specify the
# IAU2000:49900 Mars encoding?
output_raster.SetProjection( srs.ExportToWkt() ) # Exports the coordinate system
# to the file
output_raster.GetRasterBand(1).WriteArray(array) # Writes my array to the raster
output_raster.FlushCache()
评论
“旋转两次”考虑了x上y的旋转位和y上x的旋转位的影响。请参阅lists.osgeo.org/pipermail/gdal-dev/2011-July/029449.html,它试图解释“旋转”参数之间的相互关系。
–戴夫X
2014年8月11日下午4:52
这篇文章真的很有用,谢谢。但是,就我而言,当我在ArcGIS外部将其作为图像打开时,我得到的是一个全黑色的tif文件。我的空间参考是英国国家网格(EPSG = 27700),单位是米。
–FaCoffee
17年3月16日在9:13
我在这里发布了一个问题:gis.stackexchange.com/questions/232301/…
–FaCoffee
17年3月16日在9:39
您是否了解如何设置IAU2000:49900火星编码?
– K.-Michael Aye
19年3月18日在7:38
#4 楼
适用于Python的GDAL / OGR官方食谱中也有一个不错的解决方案。此配方根据数组创建栅格。
import gdal, ogr, os, osr
import numpy as np
def array2raster(newRasterfn,rasterOrigin,pixelWidth,pixelHeight,array):
cols = array.shape[1]
rows = array.shape[0]
originX = rasterOrigin[0]
originY = rasterOrigin[1]
driver = gdal.GetDriverByName('GTiff')
outRaster = driver.Create(newRasterfn, cols, rows, 1, gdal.GDT_Byte)
outRaster.SetGeoTransform((originX, pixelWidth, 0, originY, 0, pixelHeight))
outband = outRaster.GetRasterBand(1)
outband.WriteArray(array)
outRasterSRS = osr.SpatialReference()
outRasterSRS.ImportFromEPSG(4326)
outRaster.SetProjection(outRasterSRS.ExportToWkt())
outband.FlushCache()
def main(newRasterfn,rasterOrigin,pixelWidth,pixelHeight,array):
reversed_arr = array[::-1] # reverse array so the tif looks like the array
array2raster(newRasterfn,rasterOrigin,pixelWidth,pixelHeight,reversed_arr) # convert array to raster
if __name__ == "__main__":
rasterOrigin = (-123.25745,45.43013)
pixelWidth = 10
pixelHeight = 10
newRasterfn = 'test.tif'
array = np.array([[ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[ 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1],
[ 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1],
[ 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1],
[ 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1],
[ 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1],
[ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]])
main(newRasterfn,rasterOrigin,pixelWidth,pixelHeight,array)
评论
这个食谱很好,但是最终的tiff文件有问题。像素的Latlon值不正确。
–Shubham_geo
19年8月16日在13:50
您可能会发现ESRI WKT与OGC WKT之间存在怪异的不兼容之处:gis.stackexchange.com/questions/129764/…
–亚当·埃里克森(Adam Erickson)
19年8月17日在17:13
我遇到的一件事是,您提到的方式肯定会轻松地将数组更改为栅格。但是我们需要使用gdal_translate协调左上角和右下角的栅格数据。一种方法是遵循以下两个步骤:1)首先通过gdalinfo查找左上和右下纬度值2)然后,通过gdal_translate利用geotiff(通过上述将数组转换为栅格的方法生成)使用左上和右下经纬度坐标对其进行地理配准。
–Shubham_geo
19年8月18日在7:59
#5 楼
其他答案中建议的方法的替代方法是使用rasterio
软件包。我在使用gdal
生成这些文件时遇到了问题,并发现此站点很有用。假设您还有另一个tif文件(
other_file.tif
)和一个与该文件具有相同分辨率和范围的numpy数组(numpy_array
),这是对我有用的方法:import rasterio as rio
with rio.open('other_file.tif') as src:
ras_data = src.read()
ras_meta = src.profile
# make any necessary changes to raster properties, e.g.:
ras_meta['dtype'] = "int32"
ras_meta['nodata'] = -99
with rio.open('outname.tif', 'w', **ras_meta) as dst:
dst.write(numpy_array, 1)
评论
您是指教程中的哪张幻灯片?我喜欢Python,但在下面看到如此多的答案,这些答案将成为R中的衬里。
有没有人用AAIGrid选项在这里测试过Create方法?甚至AIG。它不会创建output_raster对象。也没有引发任何错误。元数据看起来可以创建Create对象,但是我总是得到NoneType。 GTiff可以正常工作。这是我尝试的代码段:```xmin,ymin,xmax,ymax = [lons.min()。values,lats.min()。values,\ lons.max()。values ,lats.max()。values] ncols = lons.shape [0] nrows = lats.shape [0] xres =(xmax-xmin)/ float(ncols)yres =(ymax-ymin)/ float(nrows)geotransform = [xmin,xres,0,ymin,0,yres] driver = gdal.GetDriverByName('AAIGrid')元数据= driver.GetMetadata()outp