最近,我在A. Megretski的一些关于“多变量控制系统”的MIT课程的笔记中偶然发现了关于“水床效应”的一些笔记。以下是摘录:


通常与开环设备的不稳定零点和极点相关的共同效应,从理论上讲根本无法同时使某些闭环传递函数“小”。频率:如果频率响应的幅度在频谱的某一部分减小,则在另一部分可能必须增大。这种效应有时称为水床效应,可以用施加在闭环传递函数上的积分不等式进行数学解释。在这种结果的基础上,是所有可能的闭环响应的仿射特性,以及解析函数的柯西积分关系。


我想我从未听说过这之前。有人可以更实际地解释这种影响吗?在实践中何时可能会遇到这种影响?

#1 楼

如果我理解本文,如果我错了,请纠正我:

A common effect, usually associated with unstable zeroes and poles of the open
loop plant, makes it theoretically impossible to make certain closed loop transfer 
functions “small” simultaneously at all frequencies:


这是关于可实现控制系统中的零极点取消。本质上:

$$ \ frac {1} {s- \ alpha} $$

对于阶跃响应不稳定,但是:

$ $ \ frac {s- \ alpha_1} {s- \ alpha_2} = 1 $$其中$$ \ alpha_1 = \ alpha_2 $$

这是稳定的;但是,由于参数变化(电阻/电容容差),不可能消除不稳定的极点。 alpha_1和alpha_2可能永远无法完美对齐以相互抵消。 (也许通过数字控制)
if amplitude of the frequency 
response is reduced in one part of the spectrum, it may have to get larger in the other 
part. This effect, sometimes called the waterbed effect, can be explained mathematically
 in terms of integral inequalities imposed on the closed loop transfer functions. 


基本上,如果alpha_1增大,则这种“水床效应”是由alpha_2向下拖拉频率响应而导致的,因为alpha_1零跳动时间更长。

如果它们不匹配,则频率响应基本上看起来像这样:

--------\
         \
          \-------------


当它们完全匹配时看起来像这样this:

----------------------------------


(即平坦的响应)

如果发生相反的情况(alpha_2变大,您应该看到相反的地方此响应的效果)

             -----------------
             /
            /
      -----/




In the basis of such results is the affine characterization of all possible 
closed loop responses, as well as the Cauchy integral relation for analytical     
functions.


本文回答了: